

 Adroit SmartUI Scripting

Reference

Integration and Extension

Product Version: 8.0

Quick Start Guide

1

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

1. Table of contents

1. Table of contents .. 1

2. Overview ... 1

3. Purpose of this guide .. 1

4. The Libraries .. 2

5. Getting started ... 3

6. How to debug .. 5

7. Interaction .. 7

Example 1 – Setting the properties of a control ... 7

Example 2 – Attaching to the events of a control .. 8

Example 3 – Changing the properties of a vector ... 10

Example 4 – Knowing when a form has finished loading ... 12

Example 5 – Changing the properties of the graphic form ... 13

Example 6 – Changing the form title based on alias values .. 14

Example 7 – Sharing information between forms ... 15

Example 8 – Sharing re-usable functionality ... 18

Example 9 – Read data elements from a data source .. 18

Example 10 – Update the value of data elements in a data source ... 19

Example 11 – How to open a graphic form, from within a script .. 19

Example 12 – How to open a graphic form with aliases, from within a script .. 20

2. Overview

The Adroit SmartUI provides a powerful and flexible platform for extending the product to provide

additional functionality using the .NET framework. Various examples are provided in C#, although VB.NET

can also be used.

This focus of this document is on the scripting environment provided in the Adroit SmartUI. For product

integration and extension please see: Adroit Product Extension and Integration guide.

3. Purpose of this guide

http://www.adroit.co.za/

2

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

This guide is intended to provide a user with enough information to understand the scripting environment

of the Adroit SmartUI. This document is written to users already armed with a good understanding of the

basic concepts within the product as well as some programming knowledge.

This guide should be used in conjunction with the Adroit Product Help Documentation (included with the

product) and the Adroit Knowledge Base: http://adroitkb2.cloudapp.net

Please note that scripting is an advanced feature of the product. Though scripting offers power and

flexibility, it needs to be used responsibly. Untested or careless scripting can cause product

instability. Adroit accepts no liability or responsibility for the incorrect and/or misuse of the scripting

functionality within the product.

4. The Libraries

The following DLLs are normally required as references in your script:

1. VIZNET.UI.SHARED.DLL

a. Common classes shared between the Operator and Designer interfaces

2. VIZNET.UI.RUNTIME.DLL

a. Classes relevant to the RUNTIME user interface i.e. the Operator and Designer in “Run” mode

3. VIZNET.UI.CONTROLS.DLL

a. User interface controls

4. VIZNET.SHARED.DLL

a. Various core classes that are shared between all components

5. Class documentation for the script classes can be downloaded here:

http://adroitdemo2.cloudapp.net/KBArticles/AdroitScriptingClassDocumentation.chm

If you cannot read the contents of the Class Documentation, it could be because it is blocked by

Windows. You can unblock it in the File Properties in Windows Explorer:

http://www.adroit.co.za/
http://adroitkb2.cloudapp.net/
http://adroitdemo2.cloudapp.net/KBArticles/AdroitScriptingClassDocumentation.chm

3

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

[Sidenote: The VIZNET nomenclature was the codename for the SmartUI project that was initiated in

2001 on the .NET Framework 1.0. It stayed on as the root namespace for all classes]

5. Getting started

This guide will use Microsoft Visual Studio as the editor. To configure the Designer to use Microsoft

Visual Studio instead of the Internal Editor:

1) Download and install Microsoft Visual Studio or Microsoft Visual Studio Express edition

2) Change the editor in the profile, under the Management section within the Designer:

http://www.adroit.co.za/

4

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

If Visual Studio has been detected, it will be available for selection:

When clicking on the “Script” icon in the Designer, Visual Studio will now be used instead of the

built-in editor:

Visual Studio will be loaded, with the “vso” or Visual Script Object now being available for edit

from the Solution Explorer within Visual Studio:

http://www.adroit.co.za/

5

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

6. How to debug

A common requirement during scripting is to attach the Visual Studio debugging environment to the

running process and debug certain functionality.

To enable debugging in the Designer or Operator:

1) Enable debugging output in the “Advanced” configuration section for either the Designer or

Operator:

2) Restart the Designer/Operator to affect the configuration change.

http://www.adroit.co.za/

6

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

3) Open the form to be debugged in the Operator/Designer. If using the Designer, ensure that the

form is in “Run” mode.

4) Open Microsoft Visual Studio and attach to the process

If the symbols are loaded, the breakpoints will resolve correctly and the code can be debugged:

Other tips:

If the script fails in the Operator (due to an exception for example), this will be logged in the

Eventlog – Application and can be viewed using the Windows Event Viewer:

http://www.adroit.co.za/

7

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

7. Interaction

Interacting with Windows Controls follow the same basic paradigm as interaction for standard

Windows Forms projects done in Visual Studio or Sharp Develop. The basic premise is setting

properties of controls or attaching to their events and acting upon the event.

The following examples are also contained within a project that can be downloaded here:

http://adroitdemo2.cloudapp.net/KBArticles/scripting_examples.zip

For example 7, the associated Microsoft Visual Studio 2010 sample solution can be downloaded

here: http://adroitdemo2.cloudapp.net/KBArticles/CommonLibrary.zip

Example 1 – Setting the properties of a control

In this example we will change the “.Text” property of a Button (Windows Forms).

1) In the Designer, create a new form and place a button on the form

2) Expose the control to the scripting environment:

3) When you set this property to “True”, a new line is added to the “InitializeComponents()” method

http://www.adroit.co.za/
http://adroitdemo2.cloudapp.net/KBArticles/scripting_examples.zip
http://adroitdemo2.cloudapp.net/KBArticles/CommonLibrary.zip

8

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

4) The “Main()” method of a script is always called when the form is initially loaded. In this example, we

will simply change the “Text” property of the button when the form is loaded:

Example 2 – Attaching to the events of a control

In this example we will attach to the “Click” event of a button.

The events of a control is listed in the “Properties” tool window under the Events section (highlighted

above).

1) Each control provides various events that can execute a script when the event

triggers.

2) Double Click on the event that you want to attach to.

3) A question will appear asking the user whether a script event handler should be

added. Click “Yes”.

http://www.adroit.co.za/

9

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

The script handler will automatically be inserted in the graphic form script.

Once the script handler have been inserted, go ahead and add the required functionality to the

method. In this case we will add a simple Message Box:

http://www.adroit.co.za/

10

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

Example 3 – Changing the properties of a vector

Vectors are located in the toolbox under the “Vectors” section:

http://www.adroit.co.za/

11

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

Vectors are “special” controls as they have the ability to zoom, rotate and scale, which other controls

do not have. Vectors are often used to represent the animated part of a process because of these

abilities.

To manipulate vectors within a script, you need a reference to VIZNET.UI.Shared.DLL; Vectors are

also called “Canvas Objects” hence the reason why vector names start with “CO” when created.

In this example we will change the background color of the vector:

Add the following namespace to the top of the script:

using VIZNET.UI.Shared.GradientTypeEditor.Model;

For a solid green color:

http://www.adroit.co.za/

12

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

private void btnSolid_Click(System.Object sender, System.EventArgs e)
 {
 // solid color green
 (cORectangle.BackColor as GradienColorSettings).ColorStyle = BrushType.Solid;
 (cORectangle.BackColor as GradienColorSettings).SolidColor = Color.Green;
 }

For a green gradient color:

private void btnGradient_Click(System.Object sender, System.EventArgs e)
 {
 // gradient with 3 colors i.e. white at position 0%, light green at position 50% and green at
position 100%
 (cORectangle.BackColor as GradienColorSettings).ColorStyle = BrushType.Gradient;

 ColorPoint[] __colorPoints = new ColorPoint[3];
 __colorPoints[0] = new ColorPoint(Color.White, 0.0f);
 __colorPoints[1] = new ColorPoint(Color.LightGreen, 0.5f);
 __colorPoints[2] = new ColorPoint(Color.Green, 1.0f);

 (cORectangle.BackColor as GradienColorSettings).ColorPositionsArray = __colorPoints;

 }

Example 4 – Knowing when a form has finished loading

In various scenarios, it is important to know when a form has finished loading. For example, if you

would like to attach to a specific event of a control after the form has completed the loading

process, or change properties of the form itself. The safest way to ensure that the form has

completed loading is to make use of a timer. The timer control will start running once the form has

completed loading.

http://www.adroit.co.za/

13

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

/// <summary>
 /// This method will run as soon as the form has completed loading - triggered from a timer
tick
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void timer_Tick(System.Object sender, System.EventArgs e)
 {

 //Remember to disable the timer after the initial tick
 timer.Enabled = false;
 MessageBox.Show("Form load complete...");

 }

Example 5 – Changing the properties of the graphic form

In some cases certain properties of a form needs to change, for example the form title, or the form size,

based on template information. To change the properties of a form at runtime, the DesignerContainer

needs to be retrieved. The DesignerContainer Parent control is the actual control that hosts the form:

// get the graphic form called "Form", if you change the name of the graphic form from "Form"
to something else then use that name instead
 DesignerContainer dc = MyController["Form"] as DesignerContainer;
 dc.ParentForm.Size = new Size(300, 300); // set the size of the graphic forms parent form
 dc.ParentForm.Text = "Hello World!"; // set the text of the graphic forms parent form

http://www.adroit.co.za/

14

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

Now when the form has completed loading (using Example 4), the above code can change the properties of

the form.

Example 6 – Changing the form title based on alias values

Aliases are a very common way of sending information between forms, for example to open a

Template. The template values can then be used to update parameters and properties within the

graphic form.

In this example, we will update the Text property of the form with the alias named: “Title”

Note: Remember to ensure that these aliases actually exist on the form.

//Get the alias we are interested in: (remember to reference
VIZNET.Spiders.EventHashtableProperty.dll)

VIZNET.Spiders.Event.EventHashtablePropertySpider aliasSpider = MyController["Form.Aliases"]
as VIZNET.Spiders.Event.EventHashtablePropertySpider;

 IOItem item = aliasSpider.OutputIOItems["Title"] as IOItem;
 if (item == null)
 {
 MessageBox.Show("Could not find alias");
 return;
 }
 DataElement de = item.Value;
 //Get the value of the actual data element
 string aliasValue = de.Value as String;

 // get the graphic form called "Form", if you change the name of the graphic form from "Form"
to something else then use that name instead

DesignerContainer dc = MyController["Form"] as DesignerContainer;
 dc.ParentForm.Text = aliasValue; // set the text of the graphic forms parent form

http://www.adroit.co.za/

15

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

Example 7 – Sharing information between forms/Global Client Side variables

In many projects it is useful to share client side information between forms. This could include the

previous graphic forms that has been opened by a user, specific project based information for that

user etc.

To share information between forms it is possible to use a Singleton class that resides within a user

created DLL. A Singleton is the name of a Design Pattern in which only one instance of the class is

created (and can therefore easily be shared amongst graphic forms).

1) Create a class library project (this could be C#, VB.Net or any other .NET language you choose for

your class library, the example provided here is in C#):

http://www.adroit.co.za/

16

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

2) If you would like to use existing SmartUI references, remember to add them:

http://www.adroit.co.za/
http://104.45.157.237/uploads/default/15/3d856e19a118f452.png
http://104.45.157.237/uploads/default/15/3d856e19a118f452.png
http://104.45.157.237/uploads/default/15/3d856e19a118f452.png

17

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

In this example, we will share a simple string variable:

 public class Shared
 {
 //A reference to our only instance of this class
 private static Shared _shared;

 public String SharedString = string.Empty;

 public static Shared GetInstance()
 {
 if (_shared == null)
 {
 _shared = new Shared();
 }
 return _shared;
 }
 }

Now we can use this library within any form script, by adding the reference and accessing the

class:

First we add a reference to our common library inside the graphic form script:

http://www.adroit.co.za/

18

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

And we have the ability to share information using the same instance of the class, across graphic

forms or within the same graphic form:

 private void btnChange1_Click(System.Object sender, System.EventArgs e)
 {
 CommonLibrary.Shared.GetInstance().SharedString = "Hello World";
 }

 private void btnChange2_Click(System.Object sender, System.EventArgs e)
 {
 MessageBox.Show("The shared variable is: " + CommonLibrary.Shared.GetInstance().SharedString);

 }

Example 8 – Sharing re-usable functionality

Similar to the above example, various methods can also be added to the common library. For

example, the ability to quickly read a data element or set a group of elements. The underlying

mechanism of sharing the class instance and making use of the Singleton design pattern stays the

same.

Example 9 – Read data elements from a data source

The “MyConnection” class provides various methods for interacting with data sources on the Server,

these include reading from and writing to elements.

Data Elements travel between the server and client inside a DataElement Collection. The

DataElement, DataElementCollection and DataElementEngine classes work together as part of the

Engine/Collection/Class Design Pattern.

To read elements from a Data Source:

try
 {
 //Read the element "Adroit.systeminfo.second" from the Adroit Data Source
 DataElement de = DataElementEngine.NewDataElement("Adroit.systeminfo.second");
 DataElementCollection dec = DataElementEngine.NewDataElementCollection();
 dec.Add(de);
 MethodReturnInfo info = MyConnection.ReadDataElements(dec);
 if (!info.Success)

{
 MessageBox.Show("Error reading element, the error was: " + info.ReturnInformation);

http://www.adroit.co.za/

19

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

 return;
 }
 DataElementCollection returnDEC = info.ReturnObject as DataElementCollection;
 DataElement returnDE = returnDEC["Adroit.systeminfo.second"];
 MessageBox.Show("The value of: " + returnDE.Name + " is: " + returnDE.Value.ToString());
 }
 catch (Exception ex)
 {
 MessageBox.Show("An exception occurred: " + ex.ToString());
 }

Example 10 – Update the value of data elements in a data source

try
 {
 //Update the element "Adroit.Analog.A1.value" in the Adroit Data Source
 DataElement de = DataElementEngine.NewDataElement("Adroit.Analog.A1.value");
 de.Value = 50.0;
 DataElementCollection dec = DataElementEngine.NewDataElementCollection();
 dec.Add(de);
 MethodReturnInfo info = MyConnection.UpdateDataElements(dec);
 if (!info.Success)
 {
 MessageBox.Show("Error updating element, the error was: " + info.ReturnInformation);
 return;
 }
 MessageBox.Show("Successful update");
 }
 catch (Exception ex)
 {
 MessageBox.Show("An exception occurred: " + ex.ToString());
 }

Example 11 – How to open a graphic form, from within a script

To open a form, and control various other client side functionality, the “ObjectManager” class can be

used. In the example below, we read the graphic form (also a type of Data Element) on the Server,

and then instruct the ObjectManager to open the form:

try
 {
 //Fetch the graphic form, from the Server for a project called Samples, graphic form name:
Sample2
 string gfName = "Scripting examples.Example 11";
 DataElement de = DataElementEngine.NewDataElement(gfName);

 //this indicates that, if the form does not exist in the current folder, it will search in
other folders of the project, if not found, the server will search for an alternate match
in other projects as well.

 de.Status = DataElement.DataElementStatus.SEARCHFORALTERNATES;
 DataElementCollection dec = DataElementEngine.NewDataElementCollection();
 dec.Add(de);

MethodReturnInfo info = MyConnection.ReadDataElements(dec);
 if (info.Success)
 {

http://www.adroit.co.za/

20

Copyright © 2008-2016 Adroit Technologies, www.adroit.co.za

 DataElementCollection returnDec = info.ReturnObject as DataElementCollection;
 DataElement returnDe = returnDec[gfName] as DataElement;
 GraphicObject go = returnDe.Value as GraphicObject;

 //Load this form with the default template set and level, alongside the alias
value we have created - NOTE: WILL ONLY WORK IN THE OPERATOR

 ObjectManager.GetInstance().OpenGraphicObject(go, GraphicObjectDialogType.ModalForm,
"Level", "Default");
 }
 else
 {
 MessageBox.Show("An error occurred trying to retrieve graphic form");
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show("An exception occurred: " + ex.ToString());
 }

Example 12 – How to open a graphic form with aliases, from within a script

try
 {
 //Fetch the graphic form, from the Server for a project called Samples, graphic form name:
Sample2
 string gfName = "Scripting examples.Example 12";
 DataElement de = DataElementEngine.NewDataElement(gfName);
 //this indicates that, if the form does not exist in the current folder, it will search in
other folders of the project, if not found, the server will search for an alternate match in other
projects as well.
 de.Status = DataElement.DataElementStatus.SEARCHFORALTERNATES;
 DataElementCollection dec = DataElementEngine.NewDataElementCollection();
 dec.Add(de);
 MethodReturnInfo info = MyConnection.ReadDataElements(dec);
 //We are now going to open a form and set one alias value. The alias name on the form we
are going to open is "Tag" and we will set the value to "Hello World";
 EventHashtable aliases = new EventHashtable();
 aliases.Add("Title", "Hello World"); // Set the alias name: "Tag", with the value: "Hello
World" for the form we are going to open
 if (info.Success)
 {
 DataElementCollection returnDec = info.ReturnObject as DataElementCollection;
 DataElement returnDe = returnDec[gfName] as DataElement;
 GraphicObject go = returnDe.Value as GraphicObject;
 //Load this form with the default template set and level, alongside the alias value we
have created - NOTE: WILL ONLY WORK IN THE OPERATOR
 MyApplication.OpenGraphicObject(go, GraphicObjectDialogType.ModalForm, "Level",
"Default", aliases);
 }
 else
 {
 MessageBox.Show("An error occurred trying to retrieve graphic form");
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show("An exception occurred: " + ex.ToString());
 }

http://www.adroit.co.za/

